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Functional data analysis

A functional variable is one whose values depend on a continuous magnitude such as time. They are functional

in the sense that they are evaluated at any time in the domain, instead of the discrete way, in which they

were originally measured or observed (Ramsay and Silverman, 2005). Thus, a functional data set is a set of

curves {x1(t), . . . , xn(t)} , with t ∈ T. Each curve can be observed at different time points of his argument t

as xi = (xi (t0) , . . . , xi (tmi
))
′

for the set of times t0, . . . , tmi
, i = 1, . . . , n and these are not necessarily the

same for each curve.

Different approaches have been taken to the study of functional data, including the nonparametric methods

proposed by Müller (2008) and Ferraty and Vieu (2006) and the basis expansion methods used by Ramsay and

Silverman (2005). The latter method is adopted in the present application, in which we seek to reconstruct

the functional form of curves in order to evaluate them at any time point t. This method assumes that the

curves belong to a finite dimensional space generated a basis of functions {φ1 (t) , . . . , φp (t)} and so they can

be expressed as

xi (t) =

p∑
j=1

aijφj (t) , i = 1, . . . , n. (1)

The functional form of the curves is determined when the basis coefficients ai = (ai1, . . . , aip)
′

are known.

These can be obtained from the discrete observations either by least squares or by interpolation (see, for

example, Escabias et al., 2005 and 2007). In our application the least squares method is considered for

functional representation.

Depending on the characteristics of the curves and the observations, various classes of basis can be used

(see, for example, Ramsay and Silverman, 2005). In practice, those most commonly used are, on the one

hand, the basis of trigonometric functions for regular, periodic, continuous and differentiable curves, and on

the other, the basis of B-spline functions, which provides a better local behavior (see De Boor, 2001).

Exploratory analysis: curves representation

Let x1 (t) , x2 (t) , . . . , xn (t) be a set of curves all of them observed at the same time points t1, t2, . . . , tm, then

the available information in this situation is the matrix

X =


x1 (t1) x1 (t2) · · · x1 (tm)

x2 (t1) x2 (t2) · · · x2 (tm)

· · · · · · · · · · · ·
xn (t1) xn (t2) · · · xn (tm)


This matrix is the one of discretized curves in Statfda in .csv format:

-4.65,-5.33,-2.53,1.26,5.79,10.79,15.21,15.28,11.62,7.02,2.95,-1.85

-6.16,-6.18,-1.74,3.62,9.44,14.78,18.38,18.20,13.87,8.49,3.24,-2.99

-5.72,-6.80,-2.94,1.85,7.50,13.14,17.49,17.64,13.31,8.27,3.53,-2.03

-3.22,-3.49,-0.15,4.69,9.34,13.40,16.29,16.60,13.59,9.25,4.90,-0.46
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-8.11,-8.26,-3.44,2.32,8.76,14.44,18.29,17.98,13.44,8.03,2.57,-4.15

-15.36,-13.23,-5.82,2.95,10.20,16.00,18.66,17.06,11.95,5.96,-1.16,-11.04

-12.78,-11.28,-4.67,3.29,10.91,16.38,19.05,17.65,12.50,6.46,-0.54,-8.98

-11.82,-10.65,-4.04,3.93,10.79,15.49,17.97,16.69,11.96,6.38,0.00,-8.22

And the sampling points t1, t2, . . . , tm,

1,2,3,4,5,6,7,8,9,10,11,12

The basis coefficients of all curves

A =


a11 a12 · · · a1p
a21 a22 · · · a2p
· · · · · · · · · · · ·
an1 an2 · · · anp

 ,

are obtained as

AT =
(
ΦT Φ

)−1
ΦTXT

where

Φ =


φ1 (t1) φ2 (t1) · · · φp (t1)

φ1 (t2) φ2 (t2) · · · φp (t2)

· · · · · · · · · · · ·
φ1 (tm) φ2 (tm) · · · φp (tm)


is the matrix of basic functions evaluated at sampling points.

Basis coefficients of all curves are provided by Statfda and can be downloaded in .csv format

"" ,"bspl4.1","bspl4.2","bspl4.3","bspl4.4","bspl4.5","bspl4.6"

"Curve 1" ,-4.67, -7.48, 4.40, 23.45, 0.80, -1.54

"Curve 2", -6.19, -8.96, 10.03, 25.78, 2.00, -2.71

"Curve 3", -5.77, -9.79, 7.12, 25.93, 1.55, -1.71

"Curve 4", -3.26, -5.97, 9.82, 22.32, 4.63, -0.30

"Curve 5", -8.13, -11.51, 9.73, 25.72, 1.41, -3.85

"Curve 6", -15.37, -16.80, 15.25, 22.75, 0.09, -10.77

"Curve 7", -12.75, -15.14, 14.93, 23.96, -0.16, -8.76

"Curve 8", -11.87, -14.25, 15.26, 21.71, 0.85, -8.02

and the plots of curves we get:
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Raw data Smoothed curves

Exploratory analysis: mean and standard deviation

From a set of curves x1 (t) , x2 (t) , . . . , xn (t) the mean curve is defined as

x (t) =
1

n

n∑
i=1

xi (t)

The mean curve can be expressed in terms of basic functions

x (t) =
1

n

n∑
i=1

xi (t) =
1

n

n∑
i=1

p∑
j=1

aijφj (t) =

p∑
j=1

ajφj (t) , aj =
1

n

n∑
i=1

aij

So the mean function is also defined throught its basis coefficients. These basis coeefficients are also provided

by Statfda and can be downloaded in .csv format.

"" ,"bspl4.1","bspl4.2","bspl4.3","bspl4.4","bspl4.5","bspl4.6"

"mean", -8.50, -11.24, 10.82, 23.95, 1.40, -4.71

and the plots of mean curve and standard deviation we get
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Mean curve Standard deviation curve

Exploratory analysis: bivariate correlation function

From a set of curves x1 (t) , x2 (t) , . . . , xn (t) with mean curve x(t) the covariance surface is defined

C (s, t) =
1

n− 1

n∑
i=1

(xi (s)− x (s)) (xi (t)− x (t))

and from it the correlation surface

r (s, t) =
C(s, t)1√

C(s, s)C(t, t)

the surface and contour plots for bivariate correlation are provided by Statfda

Surface Contour plot
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Functional principal component analysis

Let x1 (t) , . . . , xn (t) be a set of curves with mean curve

x (t) =
1

n

n∑
i=1

xi (t)

and covariance surface

C (s, t) =
1

n− 1

n∑
i=1

(xi (s)− x (s)) (xi (t)− x (t))

Functional principal components are defined as the vectors whose elements are obtained with the linear

conbination of the sample curves

ξi =

∫
T

(xi (t)− x (t)) f (t) dt, i = 1, . . . , n

that maximize the variance of ξ1, . . . , ξn and uncorrelated. By imposing this condition, functional principal

components are the solutions of this equation∫
T

C (s, t) f (s) ds = λf (t)

being λ the variance of functional principal components.

When curves are expresed in terms of basic functions as

xi (t) =

p∑
j=1

aijφj (t) , i = 1, . . . , n.

previous equation has p solutions for p values of λ that verify that λ1 ≥ λ2 ≥ · · · ≥ λp. Each one of the λj
is associated to a fj(t) function that define the funcional principal component and known as eigenfuncions or

principal component curves.

ξij =

∫
T

(xi (t)− x (t)) fj (t) dt, j = 1, . . . , p, i = 1, . . . , n

So each functional principal component ξj is a vector of dimension n. In matrix form, functional principal

components are usually considered in a matrix Γ of dimension n × p. Moreover, each functional principal

component cummulates a proportion of the total variability given by

λj∑p
j=1 λj

The total variability that cummulates the functional principal components is equal to the total variability of

curves.

Functional principal component analysis: explained variances

This section of the application provides a graph and a table of the variability cummulation:
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[1] "Percentages of explained variances"

Variance % Exp. Var % Cum. Exp. Var

Comp.1 34.43 84.6 84.6

Comp.2 4.70 11.6 96.2

Comp.3 1.41 3.5 99.7

Comp.4 0.12 0.3 100.0

Comp.5 0.03 0.1 100.1

Comp.6 0.00 0.0 100.1

Functional principal component analysis: principal component curves

When curves are expresed in terms of basic functions as

xi (t) =

p∑
j=1

aijφj (t) , i = 1, . . . , n.

eigenfunctions are also expresed in terms of the same basic functions.

fj (t) =

p∑
k=1

Fjkφk (t) , j = 1, . . . , p.

The application provides a plot of principal component curves and how the mean curve is affected by these

principal component curves
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1st PC Curve Perturbation of mean

2nd PC Curve Perturbation of mean

The application also provides the basis coefficients that define all principal component curves

"" , "PC1","PC2","PC3","PC4","PC5","PC6"

"bspl4.1", 0.69, 0.04, 0.10,-0.48, 0.85,-1.22

"bspl4.2", 0.61, 0.04,-0.25,-0.45,-1.29, 1.16

"bspl4.3", -0.55, 0.75,-0.86, 0.71, 1.00,-0.95

"bspl4.4", 0.07, 0.09, 1.21,-1.17,-0.45, 0.97

"bspl4.5", 0.18, 0.32,-0.29, 1.36,-0.48,-1.17

"bspl4.6", 0.62, 0.03, 0.34,-0.03, 0.96, 1.22
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Functional principal component analysis: biplots and scores

The application provides biplots, that are scatter plots of functional principal components. These plots show

the importance of each observation defining the functional principal components.

1st PC vs 2nd PC 1st PC vs 3rd PC

2nd PC vs 3rd PC 3rd PC vs 4th PC

The application also provides the scores or functional principal components

"" ,"Comp. 1","Comp. 2","Comp. 3","Comp. 4","Comp. 5","Comp. 6"

"Curve. 1", 5.80239 ,-4.760870,-0.686252,-0.264771,-0.063697, 0.001146

"Curve. 2", 3.02775 , 2.578402, 0.574890,-0.498647,-0.186860, 0.008495

"Curve. 3", 3.66384 ,-0.692866, 1.736547, 0.210481, 0.178087,-0.008018

"Curve. 4", 8.00051 , 2.398679,-1.639834, 0.377871,-0.044244,-0.006964
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"Curve. 5", 0.40760 , 0.449900, 1.615755, 0.216605, 0.040690, 0.009390

"Curve. 6",-9.28523 ,-1.049343,-0.053715, 0.419396,-0.258698,-0.000796

"Curve. 7",-6.62764 , 0.849808,-0.073716,-0.462598, 0.068240,-0.015430

"Curve. 8",-4.98921 , 0.226289,-1.473676, 0.001663, 0.266482, 0.012178

Functional principal component analysis: FPC expansion

The original curves can be approximated by using a reduced set of functional principal components

xi (t) =

q<p∑
j=1

ξijfj (t) , i = 1, . . . , n

By expressing the principal component curves fj(t) in terms of basic functions, we have an approximation of

the original curves in terms of basis fuctions, that is, by knowing their basis coefficients

xi (t) =

q<p∑
j=1

ξij

p∑
k=1

Fjkφk (t) =, i = 1, . . . , n

Our application provides a plot of the approximation of different curves in terms of different number q of

functional principal components
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1st curve in terms of 1 FPC 1st curve in terms of 2 FPCs

2nd curve in terms of 1 FPC 2nd curve in terms of 2 FPCs

The application also provides the basis coefficients of the curves approximated by a number q of functional

principal components. Here we show the basis coefficients of the approximation in terms of the first two

functional principal components.

" ,"bspl4.1","bspl4.2","bspl4.3","bspl4.4","bspl4.5","bspl4.6"

"Curve1", -4.67814, -7.85798, 4.060080,23.943853, 0.936901, -1.24858

"Curve2", -6.31577, -9.29195,11.065877,24.402237, 2.767888, -2.75522

"Curve3", -6.00030, -9.02024, 8.275102,24.154597, 1.842715, -2.45598

"Curve4", -2.89111, -6.25623, 8.184313,24.744840, 3.613687, 0.32198

"Curve5", -8.20413,-10.97127,10.926374,24.022235, 1.614979, -4.44119

"Curve6",-14.94922,-16.95483,15.163884,23.188481,-0.622028,-10.49294

10



Functional data analysis for Statfda. Manuel Escabias and Ana M. Aguilera

"Curve7",-13.04369,-15.26084,15.111681,23.550604, 0.464715, -8.79043

"Curve8",-11.93662,-14.28089,13.741470,23.612851, 0.563870, -7.79295

Functional principal component linear regression

The functional linear model is a functional method to explain a scalar response variable y in terms of a

functional predictor variable x(t). So let us consider a set of observations (curves) of the functional predictor

x1 (t) , x2 (t) , . . . , xn (t) and associated to a set of observations of the scalar response y1, . . . , yn, then the

functional linear regression model is formulated as

yi = α+

∫
T

xi (t)β (t) dt+ εi, i = 1, . . . , n.

This model, has a functional parameter instead of a set of scalar parameters.

In order to fit the functional linear model it is usual to consider that the curves of the predictor variable

and the functional parameter are expressed in terms of the same basis of functions

xi =

p∑
j=1

aijφj (t) , i = 1, . . . , n.

β (t) =

p∑
k=1

βkφk (t)

Under these conditions the functional linear regression model turns to a classical linear regression model

yi = α+

∫
T

 p∑
j=1

aijφj (t)

( p∑
k=1

βkφk (t)

)
dt+ εi = α+

p∑
j=1

p∑
k=1

aij

(∫
T

φj (t)φk (t) dt

)
βk, i = 1, . . . , n.

= α+

p∑
j=1

p∑
k=1

aijψjkβk, i = 1, . . . , n, ψjk =

∫
T

φj (t)φk (t) dt.

This model has as slope parameters the basis coefficients of functional parameter and as design matrix the

product of the matrix of basis coefficients of curves multiplied by the matrix of scalar products between basic

functions.

The problem with this model is the high multicollinearity that usually has (see Escabias et al. (2004)).

Our application is designed with the solution based on functional principal component analysis, that consist

of expressing the curves in terms of a reduced set of functional principal components.

The functional principal component linear regression is formulated as

yi = α+

q∑
l=1

ξilγl + εi = α+

q∑
l=1

(∫ T

0

(xi (t)− x (t)) fl (t) dt

)
γl + εi

= α−
q∑

l=1

γl

∫ T

0

x (t) fl(t)dt+

∫ T

0

xi(t)

(
q∑

l=1

γlfl(t)

)
dt

In this model the intercept parameter is

α−
q∑

l=1

γl

∫ T

0

x (t) fl(t)dt

and the parameter function

β(t) =

q∑
l=1

γlfl(t)
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By expressing the functional curves fl(t) in terms of basic functions

β(t) =

q∑
l=1

γl

(
p∑

k=1

Flkφk(t)

)
we obtain the basis coefficients of the functional parameter.

β(t) =

p∑
k=1

(
q∑

l=1

Flkγl

)
φk(t)

In Statfda the user can select the number q of functional principal components to use to fit the model.

Functional principal component linear regression: fitted model

The fitted model provides the estimation of the model in terms of the selected functional principal components.

yi = α+

q∑
l=1

ξilγl + εi

The user can download the classical fitted model provided by R

[1] "Fitted linear model"

Call:

lm(formula = RespuestaLin ~ ., data = DataFrameLineal)

Residuals:

1 2 3 4 5 6 7 8

-0.005874 -0.018620 0.016046 -0.003968 0.005309 -0.025248 0.007178 0.025176

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.886250 0.009141 534.537 1.44e-08 ***

‘Comp. 1‘ 0.168936 0.001558 108.446 1.73e-06 ***

‘Comp. 2‘ 0.252073 0.004215 59.803 1.03e-05 ***

‘Comp. 3‘ 0.058054 0.007692 7.547 0.00482 **

‘Comp. 4‘ -0.035202 0.026630 -1.322 0.27796

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.02585 on 3 degrees of freedom

Multiple R-squared: 0.9998,Adjusted R-squared: 0.9995

F-statistic: 3849 on 4 and 3 DF, p-value: 6.798e-06

Functional principal component linear regression: functional parameter

This section provides the plot of the estimation of the functional parameter of the model

yi = α+

∫
T

xi (t)β (t) dt+ εi, i = 1, . . . , n.

from its basis coefficients obtained as

β(t) =

p∑
k=1

(
q∑

l=1

Flkγl

)
φk(t)
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in terms of estimated parameters obtained by using the functional principal components as covariates.

The estimation from the first four functional principal components obtained is

"" ,"V1"

"bspl4.1",0.1485

"bspl4.2",0.1138

"bspl4.3",0.0200

"bspl4.4",0.1466

"bspl4.5",0.0462

"bspl4.6",0.1328

Functional principal component linear regression: residual analysis

The residual analysis is obtained like any other in a lineal model, by calculating the fited values

ŷi = α̂+

∫
T

xi (t) β̂ (t) dt = α̂+

p∑
j=1

p∑
k=1

aijψjkβ̂k, i = 1, . . . , n, ψjk =

∫
T

φj (t)φk (t) dt., i = 1, . . . , n.

the residual values ei = yi − ŷi and plotting residuals vs fitted values and observed vs fitted values.

The applicaton provides the classical plots provided by R and the matrix of observed and fitted values and

residuals.
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"" ,"Observed","Fitted","Residuals"

"Curve1", 4.63, 4.6359, -0.0059

"Curve2", 6.08, 6.0986, -0.0186

"Curve3", 5.44, 5.4240, 0.0160

"Curve4", 6.73, 6.7340, -0.0040

"Curve5", 5.16, 5.1547, 0.0053

"Curve6", 3.01, 3.0352, -0.0252

"Curve7", 4.00, 3.9928, 0.0072

"Curve8", 4.04, 4.0148, 0.0252

Functional principal component linear regression: prediction

Once fitted a linear model, it is possible to make predictions of the response for a new curve. Let x(t) be a

new curve observed discretely as x(t1), . . . , x(tm), once its basis coefficients are calculated it is possible to plot

it and make a prediction of the response as

ŷ = α̂+

∫
T

x (t) β̂ (t) dt = α̂+

p∑
j=1

p∑
k=1

ajψjkβ̂k, i = 1, . . . , n, ψjk =

∫
T

φj (t)φk (t) dt., i = 1, . . . , n.

The plot of the new curve is shown by Statfda and the response prediction also.

Functional logistic regression model

The functional logistic regression model is defined to model and predict a binary response variable from a

functional predictor. To this end, various functional models have been proposed (Cardot and Sarda, 2005; Rossi

et al., 2002). Ramsay and Silverman (1997) proposed diverse functional models based on basis expansion, and

since then other authors have adopted these methods to predict a binary outcome from functional predictors

(Ratcliffe et al., 2002; Escabias et al., 2004; Aguilera et al., 2008).

In order to formulate the functional logit model let Y be a binary response random variable and let

{X (t) : t ∈ T} be a functional covariate related to Y. Given x1 (t) , . . . , xn (t) a sample of curves of the func-

tional predictor and y1, . . . , yn a sample of the response associated with the n curves, the model is expressed

as

yi = πi + εi = π (xi (t)) + εi, i = 1, . . . , n,

where

πi =
exp

{
α+

∫
T
xi (t)β (t) dt

}
1 + exp

{
α+

∫
T
xi (t)β (t) dt

} , i = 1, . . . , n, (2)

ε = (ε1, . . . , εn)
′

the vector of centered random errors, with unequal variances and a Bernoulli distribution,

and β(·) the functional parameter to be estimated.

This model can also be expressed in terms of the logit transformations as

li = ln

[
πi

1− πi

]
= α+

∫
T

xi (t)β (t) dt, i = 1, . . . , n,

If we consider the sample paths x1 (t) , . . . , xn (t) and the functional parameter expressed in terms of the

basis {φ1 (t) , . . . , φp (t)}, in the form

xi =

p∑
j=1

aijφj (t) , i = 1, . . . , n.

β (t) =

p∑
k=1

βkφk (t) .
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The functional logit model in terms of the logit transformations is then expressed as

li = α+

p∑
j=1

p∑
k=1

aijψjkβk, i = 1, . . . , n

with ψjk being the scalar products between the basis functions

ψjk =

∫
T

φj (t)ϕk (t) dt, j, k = 1, . . . , p

The functional logit model is now a classical logit model which in matrix form and in terms of logit transfor-

mations is expressed as

L = Xβ

where

L = (l1, . . . , ln)
′

is the vector of logit transformations.

X = (1 | AΨ) is the design matrix, and | indicating the separation between the two boxes of the matrix.

1 = (1, . . . , 1)
′

is a n−length vector of ones.

Ψ is the matrix whose entries (ψjk) are the scalar products between basic functions setted abobe.

A is the matrix of sample curve basis coefficients as rows.

β = (β0, β1, . . . , βq)
′

with β0 = α are the basis coefficients of the functional parameter. These coefficients

would be the parameters of the multiple model to be estimated.

As in the linear case the problem with this model is the high multicollinearity that usually has (see Escabias

et al. (2004)).

Our application is designed with the solution based on functional principal component analysis, that consist

of expressing the curves in terms of a reduced set of functional principal components.

The functional principal component logit regression is formulated in terms of the logit transformations as

li = α+

q∑
l=1

ξilγl + εi = α+

q∑
l=1

(∫ T

0

(xi (t)− x (t)) fl (t) dt

)
γl + εi

= α−
q∑

l=1

γl

∫ T

0

x (t) fl(t)dt+

∫ T

0

xi(t)

(
q∑

l=1

γlfl(t)

)
dt

In this model the intercept parameter is

α−
q∑

l=1

γl

∫ T

0

x (t) fl(t)dt

and the parameter function

β(t) =

q∑
l=1

γlfl(t)

By expressing the functional curves fl(t) in terms of basic functions

β(t) =

q∑
l=1

γl

(
p∑

k=1

Flkφk(t)

)
we obtain the basis coefficients of the functional parameter.

β(t) =

p∑
k=1

(
q∑

l=1

Flkγl

)
φk(t)

In Statfda the user can select the number q of functional principal components to use to fit the model.
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Functional principal component logit regression: fitted model

The fitted model provides the estimation of the model in terms of the selected functional principal components.

li = α+

q∑
l=1

ξilγl + εi

or equivalently

yi = πi + εi, i = 1, . . . , n,

where

πi =
exp {li}

1 + exp {li}
, i = 1, . . . , n, (3)

The user can download the classical fitted model provided by R

[1] "Fitted logit model"

Call:

glm(formula = Respuesta ~ ., family = binomial, data = DataFrameLogit)

Deviance Residuals:

1 2 3 4 5 6

-5.794e-06 1.208e-05 1.136e-06 1.314e-06 7.294e-06 -7.211e-07

7 8

-1.308e-05 -5.222e-07

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.822e-01 1.432e+05 0 1

Comp.1 3.021e+00 9.630e+03 0 1

Comp.2 6.391e+00 4.085e+04 0 1

Comp.3 1.061e+01 1.416e+05 0 1

Comp.4 1.605e+01 3.401e+05 0 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.1090e+01 on 7 degrees of freedom

Residual deviance: 4.0768e-10 on 3 degrees of freedom

AIC: 10

Number of Fisher Scoring iterations: 23

Functional principal component logit regression: functional parameter

This section provides the plot of the estimation of the functional parameter of the model

li = α+

∫
T

xi (t)β (t) dt+ εi, i = 1, . . . , n.

from its basis coefficients obtained as

β(t) =

p∑
k=1

(
q∑

l=1

Flkγl

)
φk(t)
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in terms of estimated parameters obtained by using the functional principal components as covariates.

The estimation from the first four functional principal components obtained is

"" , "V1"

"bspl4.1",-4.3175

"bspl4.2",-7.8030

"bspl4.3", 5.3605

"bspl4.4",-5.1388

"bspl4.5",21.4026

"bspl4.6", 5.2361

Functional principal component linear regression: ROC area and CCR

To evaluate the predictive ability of the model, it is usual to calculate the rate of correct classifications and

the area under the ROC curve.

The correct classification rate (CCR) is one of the most commonly used measures in logistic regression to

assess the goodness of predictions. To calculate the CCR a cutoff point pc (usually pc = 0.5) is chosen and

an observation is considered to be correctly classified when the estimated probability π̂i ≥ pc and yi = 1 or

π̂i < pc and yi = 0, otherwise it is considered classified incorrectly. Thus, the CCR is defined as the ratio

between the number of observations correctly classified and the total number of sample observations.

Although a cutoff value of 0.5 is usually used, it would be more appropriate to use the cutoff point that

maximises the CCR (Hosmer and Lemeshow, 1989), which is usually very close to the proportion of ones in

the sample.

Stafda allows to select any cutoff point pc that the user wants.

The ROC curve is a graph that evaluates the model’s ability to discriminate. The fitted logistic regression

model predicts the value of the response depending on whether the predicted probability is greater than or

equal to the cut-point chosen to discriminate. The logistic regression model is considered a good predictor

if it predicts as a success those individuals actually observed to be successes and predicts as a failure those

individuals observed to be failures. The ROC curve plots the true positive rate (y = 1, ŷ = 1) against the false

positive rate (y = 0, ŷ = 1) for different cutoff points. The nearest point to the unit is the best discrimination

point and the area under the curve is a measure of the capacity to discriminate. The closer this measure is to

one, the better it is, and an acceptable value would be 0.7 or higher.

Statfda provides ROC area, classification table and CCR:
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[1] "Classification table"

Predicted

Observed 0 1

0 4 0

1 0 4

[1] "Correct Classification Rate"

[1] 100

Functional principal component linear regression: prediction

Once fitted a logit model, it is possible to make predictions of the response for a new curve. Let x(t) be a new

curve observed discretely as x(t1), . . . , x(tm), once its basis coefficients are calculated it is possible to plot it

and make a prediction of the logit transformation and the response as

l̂ = α̂+

∫
T

x (t) β̂ (t) dt = α̂+

p∑
j=1

p∑
k=1

ajψjkβ̂k, i = 1, . . . , n, ψjk =

∫
T

φj (t)φk (t) dt., i = 1, . . . , n.

π̂ =
exp{l̂}

1 + exp{l̂}

The plot of the new curve is shown by Statfda and the prediction also.
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